Efficient linear-response method circumventing the exchange-correlation kernel: theory for molecular conductance under finite bias.
نویسندگان
چکیده
An iterative approach for calculating the frequency domain linear response of molecular systems within time-dependent density-functional theory is presented. The method completely avoids computing the exchange-correlation kernel which is typically the most expensive step for large systems. In particular, virtual orbitals are not needed. This approach may be useful for treating the response of large systems. We give an outline of the theory and a demonstration on a jellium model of an elliptic gold cluster. A detailed theory is appended discussing the computation of conductance and ac impedance of molecular junctions under bias.
منابع مشابه
An Efficient Co Finite Element Approach for Bending Analysis of Functionally Graded Ceramic-Metal Skew Shell Panels
In this article, the prominence has been given to study the influence of skew angle on bending response of functionally graded material shell panels under thermo-mechanical environment. Derivation of governing equations is based on the Reddy’s higher-order shear deformation theory and Sander’s kinematic equations. To circumvent the problem of C1 continuity requirement coupled with the finite el...
متن کاملElectronic excitations from a linear-response range-separated hybrid scheme
We study linear-response time-dependent density-functional theory (DFT) based on the singledeterminant range-separated hybrid (RSH) scheme, i.e. combining a long-range Hartree-Fock exchange kernel with a short-range DFT exchange-correlation kernel, for calculating electronic excitation energies of molecular systems. It is an alternative to the more common long-range correction (LC) scheme which...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملAb Initio Electrical Conductance of a Molecular Wire
A method is developed for computing the direct current and alternating current conductance of molecular wires at small bias. The basic ingredients are: linear response theory, time-dependent density functional theory, imaginary potentials, and a jellium model for the metallic leads. The theory is capable of incorporating the effect of realistic charge distributions in the system and electron–el...
متن کاملRectification Ratio Enhancement and Functionalized Pyrene: DFT+NEGF
Electron transport properties of pure and Oxygen and/or Methyl substituted pyrene between two semi-infinite Aluminum atomic electrodes have been investigated by means of density functional theory plus the non-equilibrium green’s function method. The electrodes were represented by a slab of Al atoms oriented along the [111] plane. The computations were carried out in the bias voltage range of 0....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 123 20 شماره
صفحات -
تاریخ انتشار 2005